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Parametric statistics of individual energy levels in random Hamiltonians
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We establish a general framework to explore parametric statistics of individual energy levels in disordered
and chaotic quantum systems of unitary symmetry. The method is applied to the calculation of the universal
intralevel parametric velocity correlation function and the distribution of level shifts under the influence of an
arbitrary external perturbation.

DOI: 10.1103/PhysReVvE.67.025202 PACS nuni$)er05.45.Mt, 73.21-b

Ensembles of random Hamiltonians are used frequently ttion functions: Employing the terminology somewhat

model properties of diverse physical systems. Althoughoosely, the functiorc(w,x) can be termed “grand canoni-

eige_nfupction stgtistics can play an im.portant rqle. iN SOM& 4" in the sense that the leve (x+x) need not be a para-
applications, typically one IS |r_1terested in the statistics qf themetric “descendant” of the leved; (;). Indeed, the definition
spectral€;} of such Hamiltonians. Among all the possible , —

statistical ensembldd], a special role is played by the three ©f ¢(@,X) tracks correlations betwees)(x) and a descen-
invariant Dyson distribution$2]. Characterized by the as- dant ofany otherlevel. However, often one is interested in
sumption that the distribution is invariant under, respectivelyh® parametric evolution of the Fermi level or a low-lying
orthogonal, unitary, and symplectic rotations of the basis, th&Xcitation in systems with a fixed number of fermions. Inas-
random matrix theorfRMT) has proved to be remarkably much as such a Iev_eI can be interpreted as a s_lnglg particle
successful in modeling physical systems ranging fromevel of some effective random many-body Hamiltonian, the

nuclear spectrfi3] and mesoscopic quantum dd# to in- relevant objects are the canonical correlation functions, ex-

dividual chaotic quantum structurés. emplified by theintralevel velocity correlation function
An important class of problems arises when individual
membersH of the statistical ensemble undergo parametric C(X)=(dxe; (X) dxei (X +X)). (1

evolution according to the ruld —H'=H+ XV, whereV is

a fixed matrix, andX is the strength of the perturbation. ) o ) o
Instead of the random variables, one is now confronted A different perspectlve is provided by the distribution of
with random functionse;(X) of the external parametet. ~ Single-level shifts

Once cast in terms of the rescaled variakteX \{(dxe;)?)

(all energies being measured in the units of the mean level p(@,X)=(8(€i(X+X) — &(X) — w)). 2
spacingA), it has been argu€gld] that, for a generic pertur-

bationV (see belowy, the statistical properties of the entire S ]

random functiong; (x) exhibit the same degree of universal- APart from their intrinsic interest, it has been argyégithat

ity as that of the parent Hamiltoniad. As well as mesos- the functionsc(x) and p(w,x) describe parametric correla-
copic and chaotic quantum structures, universality of the ranions of resonant conductance peaks of quantum dots driven
dom functionse; (x) finds application to a variety of physical into the Coulomb blockade regime and perturbed by a mag-
systems including step configurations on vicinal surfdzgs ~ Netic field or an external gate potential. Similarly, onces
nonintersecting random walkers in one dimensiéh and identified with magnetic flux,c(x) coincides with the

the world lines of one-dimensional fermiof). ensemble-averaged correlation function of single-level per-
Beginning with the seminal work of Dysd#], the statis- ~ Sistent current§11]. _ _ o
tical properties of the random functiodg;(x)} have been To date, studies of parametric correlations of individual

the subject of numerous investigatiofs0] (for a review, €nergy levels have been limited to numerical investigations.
see, e.g., Ref11]). To date, exact analytic expressions haveDespite its affinity withc(w,x), the intralevel correlation
been obtained for the distribution of “locakin the param- function c(x) (and its canonical counterpartselongs to a
eter spack properties such as “level velocitiesd,€;(x) different class of objects. Its analysis presents technical dif-
[6,12,19 and “level curvatures’@?¢;(x) [14]. At the same ficulties which are, in part, similar to the challenges encoun-

time, parametric correlations between the 5{&1}:{7)} and tered in the calculation of the level spacing distribution in

vl h b lore®] using field th ic tech nonparametric random matrix ensembles. The latter are
{.ei(x X)} have been exp or_e[ ] using fie eoretic tech- nown to engage DOS correlations that go beyond the two-
niques[11]. As well as establishing the range of universality,

Y . ) oint averages presently accessible by field theoretic tech-
explicit expressions for the parametric correlator of the denp 9°s b y y

; ; ~~"'niques, and lead to expressions in terms of Fredholm deter-
sity of statedDOS) and the related level velocity correlation minants with integrable kernelg].

function  ¢(w,X)=(Zjdxe;(X) dxej(x+x) S(e— €(x)) d(e The aim of the present paper is to formulate a general
+ w—€;(x+x))) have been inferred. framework to explore parametric correlations inélividual

When the RMT is applied to many-fermion systems, anenergy levels. In particular, for thenitary random matrix
important distinction arises between two classes of correlaensemble, we will show that
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c(x) Before outlining the derivation of these results, several

10 remarks are in order.

(i) The universality of Egs(6) can be inferred from the
universality of Eq.(13) below[6]. As such, these results can
be applied to the parametric evolution of spectra that obey
Dyson statistics only locally.

(i) Although we have not succeeded in obtaining a direct
proof, in accordance with the conjecture made in R&7],
the distribution of single-level shifts appears to assume a
Gaussian formp(w,x)=e" 270/ \27o(x) at any value
of x. The corresponding width of the Gaussian can be ex-
pressed as

08 1

06 T

04 T

02 1

0.0

[ — — X
027 U(X)E<[5i(x+x)_5i(X)]2>:2f dx’(x=x")c(x").
FIG. 1. Level velocity correlation function obtained from Egs. °
(3) and (5)—(7) (solid ling) vs direct numerical simulation of large At small x, where p(w,x) can be inferred from the level
random matrice$16] (dot9. The widtho(x) of the Gaussian dis-
tribution of level shifts together with the? asymptotics at smakt
is shown in the inset.

Xx—0
velocity distribution[6,12], o:(x) ~ x2, which reflectgiden-
tifying time with x?) independent “diffusion” of individual
levels. In the opposite limik—cc, making use of the known

X— 00
2wd¢$ 1 5 . asymptotic dependendé] c(x) ~ — 1/7w?x? obtained from
c(x)= d“’ 27 7.7 (=)Z(wx;¢),  (3) 4 perturbative analysis, one can infer the limiting behavior
X—00
a(x) ~ const+(2/7%)Inx. The resulting strongly subdiffu-
2rdgp 1 sive behavior at largg can be ascribed to the rigidity of the

0 2T 2.7 (—35)Z(w.X; ), ) spectrum “hemming in” the meandering levels.
(iiil) The generating functio is a particular case of a

wherez. (¢)=1+e*'% and, adopting the shorthand nota- more general obje(‘iq(J,J’;x;gﬁ) which defines
tion 1 to represent the Diraé function, ¢

p(w,x)=

. Py(J,d":x)= €'99Z4(3,3";:x; ) (8
Z(w,x;¢)=det 1y 1-K($)]. (5) ! 0o 2m
The operator kermnel(¢) has matrix elements as the probability that the numba(J) of levels{e(x)} in
the (not necessarlIy_contlguo)JsmtervaI J and the number
F(N; ) —F(u; ) n’(J") of levels{¢(x+x)} in the intervald’ differ by ex-

1
KON, ¢)_ D()\)D( ) , (6a) actly g. Taking J and J’ to be semi-infinite intervald =
(—=,e] andJd,, ,=(—>,e+ w], one can derive generallza-

where tions of Egs.(3) and(4), WhICh involve correlations between
levels €;(x) and €, o(X+X):

A—p

F )\ _(Z++Z*) “ _ Dil)\ I S
M)=—1—4 Z)D TN () =( k€ (X) x4 (X X))
(6b) 21Td 'qd’ )
=(- 1)qf d“’j oy =)
Here the integral is understood in the sense of the Cauchy 22
rincipal value, with variabled and u restricted to the in- =
prine K XZo(Jed e 0iXi ), )

terval[ —1,1], and the dependence @randw is encoded in

the function pq(w,x)z(g[mq(;ﬂ)—ei(;)—wp

D(N)=exfd i mw\ + m2x2\2/2]. (7) 2ndgp 99
=( 1)qf

(=243 der0iXs ).
It is interesting to note that, after the substitutici—> —it, 0 27 Z4Z- e

at =0, the integral kernek coincides with that arising in (10)
the calculation of time-dependent correlation functions of the _
one-dimensional interacting Bose gas at zero temperaturEhe exact analytic expression farwill be given below.

[15]. A comparison of the universal functiafx) as inferred (iv) In some applications, the fixed perturbatigv may
from Egs.(3) and(5)—(7) with the results of direct numerical be offinite rank that is, it may possess only a finite number
simulation is shown in Fig. 1. r of nonzero eigenvaluegl8]. In such situations Eq9Y6)
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retain their validity providing D(\) is replaced by k 1‘)51[&_1]

"M det{1—iNR), whereR is the reactance matrix for K={| . . . , (14
scattering of the potentiakV [13], and def, denotes the Dok k

determinant in the space of scattering channels. In this case,

x may be identified with any of the variables parametrizingwhere the matrix elements of the operator sine keknef

R. the unitary Dyson ensemble akeu w) = sinar(u—w)/m(u
(v) Despite the existence of well-developed analyucal_w) and [Dok](u,w) =€~ (x%2)d?/du? k(u—w). Fixing the

tools for the study of integral kernels with tlstructureof  jitarencen’ — n= q and summing over ali, one obtains the

Eqg. (6a) [15], it is at present unclear whether these methOd%robabmtyP (3,37:) that the numbers of levels in the two
can be generalized to accommodéaténtegration in Eqs(3) intervalsJ anqd J' differ by q;

and(4).

The analysis of parametric statistics of individual energy o w KK+
levels relies on a technical device which ensures that the, (3,37, X)—E 2 ) Mk
level €,(x+x) is indeed the descendant g{x) by demand- n=0 Ni( ”+Q)' k n o (k=m!(k'—n—q)!
ing that it has the same ordinal number as counted from the n+a
bottom of the spectrum. Specifically, due to the absence of o d¢> i (_1)k+k’+quk, )
level crossings, the intralevel velocity correlation function —fo > 'q¢k . T '_i K

coincides with the conditional average =g

(15

C(X):J dw< 5n(JE),n’(JE+w)Z bl e— €(x)] o _ _
- 1 Substituting Eq(13) into Eq. (15), one finds

Xﬁ;ﬁ[e+w—ej(;+x)]>, (11 =de
Pq(J,3"%)=(— 1)0' 5 e9%! deflog—KII(¢)]

where 6, ,» denotes the Kroneckef symbol, andé is the -1
step function. The corresponding distribution of level shifts Iy

p(w,X) is given by an analogous expression withreplaced _kzo | defloo— KH7(¢)] ] '
by d. (and no integration ove®). By generalizing the cor- y=0
responding nonparametric formula B (J) [19], our start- (16)
ing point is the general expression for the probability

Pan(J3,J") to find n levels in the intervall of the unper- where

turbed sequencand n' levels in the intervall’ of the per-

turbed sequence, z, O z. O
H<¢>=(O Z), H7<¢>=<0 ) )
(_ )n+n

Z_
Pa(30)="—"x 3 3 Kk

nin’l  &=n =y (k=n)l(k'—n")!" and o; are the Pauli matrices. The determinants are under-
(120 stood as functional determinants on the space of two-
component functions defined on the product intedall’.

Here ry represents the multipoint parametric correlatlonThe expression in curly brackets in H46) can be identified

function of the DOS[6,18 integrated over the interval as the generating functicn.
J*eJ'K with the corresponding measureg.; and du: . In order to apply Eq(16) to the computation of the intra-

Owing to the determinantal structure of the DOS correlatloﬂevel velocity correlation function and the dlstnbutlon of the

function, r . can be represented in the form of a fermionic parametric level shifts, one must sétJ. andJ'=J.,,,.
functionalkilategral P Settingq=0 and using Eq(11), one obtams Eqs3) and

(4), whereZ is identified with the first determinant in Eq.
K (16). For q#0, a similar procedure leads to Eq®) and

- V| & (10).
i detKJ’ b D\If(fd,uj(u)f(u)g(u)) The use of semi-infinite intervals to defimgJ,) and

K n'(J..,) is justified only if the support of the spectrum is

><( f dey (W) 7(W) 77(W)) finite. The latter condition would be trivially fulfilled if one
were to use, instead ok(u—w), the exact Christoffel-

o Darboux kernel whose scaling limits interpolate between the
xex;{f duf dW‘If(u)Kl(u,w)\If(w)} (13)  sine kernel inside the Wigner semicircle, and the Airy kernel
at its endpoints. However, in practice, employing such a ker-
o nel would present significant technical difficulties. To cir-
whereWV = (¢, 7) is a fermionic doublet. Here cumvent this problem, we use a regularized kernel
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k(U= )= sinzr(u—\)N) e+ ) (17 deflog—KII(¢)]=defl—[z, k—z,z_k(D *1)D
m(U—w

+z_ (D *k)D].
where the limit6— 0 is implied in all expressions involving . ) .
this kernel. Using Eq(13) it is easily shown thatn(J,.))  Employing the Fourier representations,

=(n'(J..))=2/5, and ([n(J..)—n’(J..)]1?)~O(S). Thus, Ku)| 1 [~ B(1—N)6(1+)\)
although the regularization formally violates the level num- { ] = _f d)\[ gihmu
ber conservation, the corresponding error tends to zero in the s 2J)-= 1
limit 6—0. In the following we will suppress the index . )

As written, Eq.(16) involves a matrix oscillating integral 2nd making use of Eq7), one finds
kernel defined on a product of semi-infinite intervals. How- _ - moA g A AR
ever, as we will now show for the cagg=0, it can be [z:k=2, 2 k(D™ ) D+ 2 (DK D](U.W)
rewritten in the form of Eqs(6) which is (i) more amenable L) N z.z_ (=
to numerical analysis, an@) makes the integrability of the =j - € w=uiz, — o j du
kernel(in the sense discussed in REf5]) manifest. Without -t -
loss of generality, we can set=0, and shift the var- e ™= ND () R
iables so as to define the determinant on the quadrant S ——- D+ZD_1(?\)D]- (18
(—<0,0]®(—,0]. The corresponding shift operator is ab- ®

sorbed into the redefinitio,— D=e*¥4“D,. The term in- Finally, the cyclic invariance of the determinant and the iden-
volving the & function in the upper right corner of Eql4)  tity z, +z_=z,z_ are used to perform the integrals in the
can be separated to reveal the dyadic structure of the remaio-w space, with the resulting kernel in theu space having

der: the form of Eqs.(6). Remarkably, taking the limit—0 in
the final expressions leads taansingularkernel defined in
A 1 o 0 P4 terms of the Cauchy principal value integtéb).
K=| .|®k D k) - ) As a final comment, it should be noted that the method of
0 0 using the¢ integration to “count” the levels in conjunction

. ) . ~ . with the regularization analogous to E@.7) is equally ap-
Now, using the identities lpo+2z_D "loy) “=(loo  plicable to other Dyson ensembles. However, at present there
—z.D Yo,), and det{oy+z_D Yo,)=1, whereo, exist no analogs of Eq.13) for other ensembles, and thus

=(o,+ioy)/2, one obtains our consideration is perforce limited to the unitary case.
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