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Parametric statistics of individual energy levels in random Hamiltonians
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We establish a general framework to explore parametric statistics of individual energy levels in disordered
and chaotic quantum systems of unitary symmetry. The method is applied to the calculation of the universal
intralevelparametric velocity correlation function and the distribution of level shifts under the influence of an
arbitrary external perturbation.
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Ensembles of random Hamiltonians are used frequentl
model properties of diverse physical systems. Althou
eigenfunction statistics can play an important role in so
applications, typically one is interested in the statistics of
spectra$e i% of such Hamiltonians. Among all the possib
statistical ensembles@1#, a special role is played by the thre
invariant Dyson distributions@2#. Characterized by the as
sumption that the distribution is invariant under, respective
orthogonal, unitary, and symplectic rotations of the basis,
random matrix theory~RMT! has proved to be remarkabl
successful in modeling physical systems ranging fr
nuclear spectra@3# and mesoscopic quantum dots@4# to in-
dividual chaotic quantum structures@5#.

An important class of problems arises when individu
membersH of the statistical ensemble undergo parame
evolution according to the ruleH→H85H1XV, whereV is
a fixed matrix, andX is the strength of the perturbation
Instead of the random variablese i , one is now confronted
with random functionse i(X) of the external parameterX.
Once cast in terms of the rescaled variablex5XA^(]Xe i)

2&
~all energies being measured in the units of the mean le
spacingD), it has been argued@6# that, for a generic pertur
bation V ~see below!, the statistical properties of the entir
random functionse i(x) exhibit the same degree of universa
ity as that of the parent HamiltonianH. As well as mesos-
copic and chaotic quantum structures, universality of the r
dom functionse i(x) finds application to a variety of physica
systems including step configurations on vicinal surfaces@7#,
nonintersecting random walkers in one dimension@8#, and
the world lines of one-dimensional fermions@6#.

Beginning with the seminal work of Dyson@9#, the statis-
tical properties of the random functions$e i(x)% have been
the subject of numerous investigations@10# ~for a review,
see, e.g., Ref.@11#!. To date, exact analytic expressions ha
been obtained for the distribution of ‘‘local’’~in the param-
eter space! properties such as ‘‘level velocities’’]xe i(x)
@6,12,13# and ‘‘level curvatures’’]x

2e i(x) @14#. At the same

time, parametric correlations between the sets$e i( x̄)% and

$e i( x̄1x)% have been explored@6# using field theoretic tech
niques@11#. As well as establishing the range of universali
explicit expressions for the parametric correlator of the d
sity of states~DOS! and the related level velocity correlatio
function c̃(v,x)5^( i j ] x̄e i( x̄)] x̄e j ( x̄1x)d„e2e i( x̄)…d„e
1v2e j ( x̄1x)…& have been inferred.

When the RMT is applied to many-fermion systems,
important distinction arises between two classes of corr
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tion functions: Employing the terminology somewh
loosely, the functionc̃(v,x) can be termed ‘‘grand canoni
cal’’ in the sense that the levele j ( x̄1x) need not be a para
metric ‘‘descendant’’ of the levele i( x̄). Indeed, the definition
of c̃(v,x) tracks correlations betweene i( x̄) and a descen-
dant ofany otherlevel. However, often one is interested
the parametric evolution of the Fermi level or a low-lyin
excitation in systems with a fixed number of fermions. Ina
much as such a level can be interpreted as a single par
level of some effective random many-body Hamiltonian, t
relevant objects are the canonical correlation functions,
emplified by theintralevel velocity correlation function

c~x![^] x̄e i~ x̄!] x̄e i~ x̄1x!&. ~1!

A different perspective is provided by the distribution
single-level shifts

p~v,x![^d„e i~ x̄1x!2e i~ x̄!2v…&. ~2!

Apart from their intrinsic interest, it has been argued@4# that
the functionsc(x) and p(v,x) describe parametric correla
tions of resonant conductance peaks of quantum dots dr
into the Coulomb blockade regime and perturbed by a m
netic field or an external gate potential. Similarly, oncex is
identified with magnetic flux,c(x) coincides with the
ensemble-averaged correlation function of single-level p
sistent currents@11#.

To date, studies of parametric correlations of individu
energy levels have been limited to numerical investigatio
Despite its affinity with c̃(v,x), the intralevel correlation
function c(x) ~and its canonical counterparts! belongs to a
different class of objects. Its analysis presents technical
ficulties which are, in part, similar to the challenges enco
tered in the calculation of the level spacing distribution
nonparametric random matrix ensembles. The latter
known to engage DOS correlations that go beyond the t
point averages presently accessible by field theoretic te
niques, and lead to expressions in terms of Fredholm de
minants with integrable kernels@2#.

The aim of the present paper is to formulate a gene
framework to explore parametric correlations ofindividual
energy levels. In particular, for theunitary random matrix
ensemble, we will show that
©2003 The American Physical Society02-1
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c~x!5E
2`

`

dvE
0

2pdf

2p

1

z1z2
~2]x

2!Z~v,x;f!, ~3!

p~v,x!5E
0

2pdf

2p

1

z1z2
~2]v

2 !Z~v,x;f!, ~4!

where z6(f)511e6 if and, adopting the shorthand not
tion 1 to represent the Diracd function,

Z~v,x;f!5det[ 21,1]@12K̂~f!#. ~5!

The operator kernelK̂(f) has matrix elements

K~l,m;f!5
1

4p i
AD~l!D~m!

F~l;f!2F~m;f!

l2m
, ~6a!

where

F~l;f!5
~z11z2!

p i «
2`

`

dm
D 21~m!

m2l
2~z12z2!D 21~l!.

~6b!

Here the integral is understood in the sense of the Cau
principal value, with variablesl andm restricted to the in-
terval @21,1#, and the dependence onx andv is encoded in
the function

D~l!5exp@ ipvl1p2x2l2/2#. ~7!

It is interesting to note that, after the substitutionx2°2 i t ,
at f50, the integral kernelK̂ coincides with that arising in
the calculation of time-dependent correlation functions of
one-dimensional interacting Bose gas at zero tempera
@15#. A comparison of the universal functionc(x) as inferred
from Eqs.~3! and~5!–~7! with the results of direct numerica
simulation is shown in Fig. 1.

FIG. 1. Level velocity correlation function obtained from Eq
~3! and ~5!–~7! ~solid line! vs direct numerical simulation of larg
random matrices@16# ~dots!. The widths(x) of the Gaussian dis-
tribution of level shifts together with thex2 asymptotics at smallx
is shown in the inset.
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Before outlining the derivation of these results, seve
remarks are in order.

~i! The universality of Eqs.~6! can be inferred from the
universality of Eq.~13! below @6#. As such, these results ca
be applied to the parametric evolution of spectra that o
Dyson statistics only locally.

~ii ! Although we have not succeeded in obtaining a dir
proof, in accordance with the conjecture made in Ref.@17#,
the distribution of single-level shifts appears to assum
Gaussian formp(v,x)5e2v2/2s(x)/A2ps(x) at any value
of x. The corresponding width of the Gaussian can be
pressed as

s~x![^@e i~ x̄1x!2e i~ x̄!#2&52E
0

x

dx8~x2x8!c~x8!.

At small x, where p(v,x) can be inferred from the leve

velocity distribution@6,12#, s(x) ;
x→0

x2, which reflects~iden-
tifying time with x2) independent ‘‘diffusion’’ of individual
levels. In the opposite limitx°`, making use of the known

asymptotic dependence@6# c(x) ;
x→`

21/p2x2 obtained from
a perturbative analysis, one can infer the limiting behav

s(x) ;
x→`

const1(2/p2)ln x. The resulting strongly subdiffu-
sive behavior at largex can be ascribed to the rigidity of th
spectrum ‘‘hemming in’’ the meandering levels.

~iii ! The generating functionZ is a particular case of a
more general objectZ̃q(J,J8;x;f) which defines

Pq~J,J8;x!5E
0

2pdf

2p
eiqfZ̃q~J,J8;x;f! ~8!

as the probability that the numbern(J) of levels $e i( x̄)% in
the ~not necessarily contiguous! interval J and the number
n8(J8) of levels $e i( x̄1x)% in the intervalJ8 differ by ex-
actly q. Taking J and J8 to be semi-infinite intervalsJe5
(2`,e# andJe1v5(2`,e1v#, one can derive generaliza
tions of Eqs.~3! and~4!, which involve correlations betwee
levelse i( x̄) ande i 1q( x̄1x):

cq~x![^] x̄e i~ x̄!] x̄e i 1q~ x̄1x!&

5~21!qE
2`

`

dvE
0

2pdf

2p

eiqf

z1z2
~2]x

2!

3Z̃q~Je ,Je1v ;x;f!, ~9!

pq~v,x![^d@e i 1q~ x̄1x!2e i~ x̄!2v#&

5~21!qE
0

2pdf

2p

eiqf

z1z2
~2]v

2 !Z̃q~Je ,Je1v ;x;f!.

~10!

The exact analytic expression forZ̃ will be given below.
~iv! In some applications, the fixed perturbationXV may

be offinite rank; that is, it may possess only a finite numb
r of nonzero eigenvalues@18#. In such situations Eqs.~6!
2-2
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retain their validity providing D(l) is replaced by
eipvl detsc(12 ilR), whereR is the reactance matrix fo
scattering of the potentialXV @13#, and detsc denotes the
determinant in the space of scattering channels. In this c
x may be identified with any of the variables parametrizi
R.

~v! Despite the existence of well-developed analyti
tools for the study of integral kernels with thestructureof
Eq. ~6a! @15#, it is at present unclear whether these metho
can be generalized to accommodatef integration in Eqs.~3!
and ~4!.

The analysis of parametric statistics of individual ener
levels relies on a technical device which ensures that
level e i( x̄1x) is indeed the descendant ofe i( x̄) by demand-
ing that it has the same ordinal number as counted from
bottom of the spectrum. Specifically, due to the absence
level crossings, the intralevel velocity correlation functi
coincides with the conditional average

c~x!5E
2`

`

dvK dn(Je),n8(Je1v)(
i j

] x̄u@e2e i~ x̄!#

3] x̄u@e1v2e j~ x̄1x!#L , ~11!

wheredn,n8 denotes the Kroneckerd symbol, andu is the
step function. The corresponding distribution of level shi
p(v,x) is given by an analogous expression with] x̄ replaced
by ]e ~and no integration overv). By generalizing the cor-
responding nonparametric formula forPn(J) @19#, our start-
ing point is the general expression for the probabil
Pnn8(J,J8) to find n levels in the intervalJ of the unper-
turbed sequenceand n8 levels in the intervalJ8 of the per-
turbed sequence,

Pnn8~J,J8!5
~21!n1n8

n!n8!
(
k5n

`

(
k85n8

`
~21!k1k8r kk8

~k2n!! ~k82n8!!
.

~12!

Here r kk8 represents the multipoint parametric correlati
function of the DOS@6,18# integrated over the interva
Jk

^ J8k8 with the corresponding measuresdmJ and dmJ8 .
Owing to the determinantal structure of the DOS correlat
function, r kk8 can be represented in the form of a fermion
functional integral

r kk85detKE DC DC̄S E dmJ~u!j̄~u!j~u! D k

3S E dmJ8~w!h̄~w!h~w! D k8

3expF E duE dwC̄~u!K21~u,w!C~w!G , ~13!

whereC̄5( j̄,h̄) is a fermionic doublet. Here
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K̂5S k̂ D̂0
21@ k̂21#

D̂0k̂ k̂
D , ~14!

where the matrix elements of the operator sine kernelk̂ of
the unitary Dyson ensemble arek(u2w)5sinp(u2w)/p(u
2w), and @D̂0k̂#(u,w)5e2(x2/2)d2/du2

k(u2w). Fixing the
differencen82n5q and summing over alln, one obtains the
probability Pq(J,J8;x) that the numbers of levels in the tw
intervalsJ andJ8 differ by q:

Pq~J,J8;x!5 (
n50

`
1

n! ~n1q!! (
k5n

k85n1q

`
~21!k1k81qr kk8

~k2n!! ~k82n2q!!

5E
0

2pdf

2p
eiqf (

k50
k85q

`
~21!k1k81qr kk8

k!k8!
z1

k z2
k8 .

~15!

Substituting Eq.~13! into Eq. ~15!, one finds

Pq~J,J8;x!5~21!qE
0

2pdf

2p
eiqfH det@1s02K̂P~f!#

2 (
k850

q21 ]g
k8

k8!
det@1s02K̂Pg~f!#U

g50
J ,

~16!

where

P~f!5S z1 0

0 z2
D , Pg~f!5S z1 0

0 gz2
D ,

and s i are the Pauli matrices. The determinants are und
stood as functional determinants on the space of tw
component functions defined on the product intervalJ^ J8.
The expression in curly brackets in Eq.~16! can be identified
as the generating functionZ̃.

In order to apply Eq.~16! to the computation of the intra
level velocity correlation function and the distribution of th
parametric level shifts, one must setJ5Je and J85Je1v .
Settingq50 and using Eq.~11!, one obtains Eqs.~3! and
~4!, whereZ is identified with the first determinant in Eq
~16!. For qÞ0, a similar procedure leads to Eqs.~9! and
~10!.

The use of semi-infinite intervals to definen(Je) and
n8(Je1v) is justified only if the support of the spectrum
finite. The latter condition would be trivially fulfilled if one
were to use, instead ofk(u2w), the exact Christoffel-
Darboux kernel whose scaling limits interpolate between
sine kernel inside the Wigner semicircle, and the Airy kern
at its endpoints. However, in practice, employing such a k
nel would present significant technical difficulties. To c
cumvent this problem, we use a regularized kernel
2-3
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kd~u2w!5
sinp~u2w!

p~u2w!
e2(1/2)d(uuu1uwu), ~17!

where the limitd→0 is implied in all expressions involving
this kernel. Using Eq.~13! it is easily shown that̂ n(J`)&
5^n8(J`)&52/d, and ^@n(J`)2n8(J`)#2&;O(d). Thus,
although the regularization formally violates the level nu
ber conservation, the corresponding error tends to zero in
limit d→0. In the following we will suppress the indexd.

As written, Eq.~16! involves a matrix oscillating integra
kernel defined on a product of semi-infinite intervals. Ho
ever, as we will now show for the caseq50, it can be
rewritten in the form of Eqs.~6! which is ~i! more amenable
to numerical analysis, and~ii ! makes the integrability of the
kernel~in the sense discussed in Ref.@15#! manifest. Without
loss of generality, we can sete50, and shift the var-
iables so as to define the determinant on the quadra
(2`,0# ^ (2`,0#. The corresponding shift operator is a
sorbed into the redefinitionD̂0→D̂5evd/duD̂0. The term in-
volving thed function in the upper right corner of Eq.~14!
can be separated to reveal the dyadic structure of the rem
der:

K̂5S 1

D̂D ^ ~ k̂ D̂21k̂!2S 0 D̂211

0 0
D .

Now, using the identities (1s01z2D̂211s1)215(1s0

2z2D̂211s1), and det(1s01z2D̂211s1)51, where s1

5(s11 is2)/2, one obtains
,

y

n,

,

e
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det@1s02K̂P~f!#5det$12@z1k̂2z1z2k̂~D̂211!D̂
1z2~D̂21k̂!D̂#%.

Employing the Fourier representations,

H k~u!

d~u!
J 5

1

2E2`

`

dlH u~12l!u~11l!

1 J eilpu

and making use of Eq.~7!, one finds

@z1k̂2z1z2k̂~D̂211!D̂1z2~D̂21k̂!D̂#~u,w!

5E
21

1 dl

2
eipl(w2u)H z12

z1z2

2p i E2`

`

dm

3
eipw(m2l)D 21~m!

l2m2 id
D̂1z2D 21~l!D̂J . ~18!

Finally, the cyclic invariance of the determinant and the ide
tity z11z25z1z2 are used to perform the integrals in th
u-w space, with the resulting kernel in thel-m space having
the form of Eqs.~6!. Remarkably, taking the limitd→0 in
the final expressions leads to anonsingularkernel defined in
terms of the Cauchy principal value integral~6b!.

As a final comment, it should be noted that the method
using thef integration to ‘‘count’’ the levels in conjunction
with the regularization analogous to Eq.~17! is equally ap-
plicable to other Dyson ensembles. However, at present t
exist no analogs of Eq.~13! for other ensembles, and thu
our consideration is perforce limited to the unitary case.
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